Abstract

http://ssrn.com/abstract=1417310
 
 

References (61)



 
 

Citations (12)



 


 



Microdata Adjustment by the Minimum Information Loss Principle


Joachim Merz


Research Institute on Professions; Leuphana Universität Lüneburg; Institute for the Study of Labor (IZA)

July 1994

FFB Discussion Paper No. 10

Abstract:     
Microdata have become increasingly important for economic and social analyses. One striking problem with almost any practical analysis of microdata, microdata as a singular cross or longitudinal sample or within (static) microsimulation, is to achieve representative results.

In this study a consistent solution of the microdata adjustment problem - that is to achieve representative results by re-weighting microdata to fit aggregate control data - is presented based on the Minimum Information Loss (MIL) principle. Based on information theory this principle satisfies the desired positivity constraint on the weighting factors to be computed. For the consistent solution which simultaneously adjusts hierarchical microdata (e.g. household and personal information), a fast numerical solution by a specific modified Newton-Raphson (MN) procedure with a global exponential approximation is proposed.

Practical experiences for large microdata sets in a pension reform analysis with e.g. more than 60.000 households and 240 restrictions simultaneously to be achieved within the Sfb 3 microsimulation model show that this MN procedure was able to rather largely reduce the computional expenses by 75%. The available efficient PC-computer program ADJUST is also succesfully applied in a described microsimulation analyses of the recent 1990 German tax reform investigating the impacts on market and non-market labour supply within the formal and informal economy, and in a recent firm microsimulation analysion explaining factors of successful firms in the German engineering industry.

Number of Pages in PDF File: 43

Keywords: Microdata Adjustment, Microanalyses, Microsimulation, Minimum Information Loss, Modified Newton- Raphson Algorithm, PC program package ADJUST

JEL Classification: C80, C81

Accepted Paper Series





Download This Paper

Date posted: June 12, 2009  

Suggested Citation

Merz, Joachim, Microdata Adjustment by the Minimum Information Loss Principle (July 1994). FFB Discussion Paper No. 10. Available at SSRN: http://ssrn.com/abstract=1417310

Contact Information

Joachim Merz (Contact Author)
Research Institute on Professions ( email )
Lüneburg
Germany
Leuphana Universität Lüneburg
Scharnhorststrasse 1
Lüneburg, 21314
Germany
Institute for the Study of Labor (IZA)
P.O. Box 7240
Bonn, D-53072
Germany
Feedback to SSRN


Paper statistics
Abstract Views: 336
Downloads: 39
References:  61
Citations:  12

© 2014 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollo8 in 0.265 seconds