Footnotes (122)



Synthetic Cells, Synthetic Life, and Inheritance

Kristine S. Knaplund

Pepperdine University School of Law

September 2011

Valparaiso University Law Review, Vol. 45, 2011
Pepperdine University Legal Studies Research Paper No. 2011/17

In May 2010, J. Craig Venter and his team announced the creation of a “synthetic cell,” or as the team described it, a process of “synthesis, assembly, cloning, and successful transplantation [of a synthetic genome] to create a new cell controlled by this synthetic genome.” They chose to start with a simple bacterium, Mycoplasma genitalium (“M. genitalium”) because it has “the smallest complement of genes of any known organism capable of independent growth in the laboratory.” Using chemical enzymes and live bacteria, they were able to replicate the genome sequence of M. genitalium and then transplant it into a natural cell controlled by the synthetic genome. Although the team had not created a new cell entirely from chemicals, their research demonstrates progress towards that end.

The creation of a synthetic genome is an important advancement in synthetic biology, “an emerging field of research that combines elements of biology, engineering, genetics, chemistry, and computer science.” Synthetic biology research often begins with a “[t]op-down” approach, using existing genes and other materials as parts to be analyzed or possibly reconfigured. For Venter’s team, that included sequencing the genome of M. genitalium in 1995. Synthetic biology also includes “[b]ottom-up” research to create new organisms using only chemical reagents.

Synthetic biology is used today in the field of assisted reproduction to analyze existing genes. An example of such “top-down” synthetic biology is preimplantation genetic diagnosis (“PGD”) to screen for human immunodeficiency virus, cystic fibrosis, or other diseases. This Article will focus on the “bottom-up” use of synthetic biology in the context of assisted reproduction. One day, scientists may be able to create synthetic human gametes or embryos for purposes of assisted reproduction. It is impossible to forecast when this may occur; as the 2010 Presidential Commission for the Study of Bioethical Issues noted, “the pace of discovery is unpredictable.” But instead of deferring the discussion until synthetic sperm or ova actually appear, we should anticipate the risks and benefits now. This Article will focus on the practical and regulatory issues that may encourage or inhibit the use of Venter’s technology to create synthetic gametes and the legal issues of parentage and inheritance for a synthetically created child.

Part II of this Article sets the stage by briefly discussing infertility in the United States, the development of assisted reproduction technologies to counteract infertility, and other additional uses of assisted reproductive technologies (“ART”) such as PGD, which is also used by fertile couples. Part III examines the existing laws and regulations that may apply to the development of synthetic human gametes or embryos. With the market demands from Part II and the regulatory structure from Part III in mind, Part IV will look at the parentage and inheritance issues if a synthetic gamete results in a living child. Part V concludes the Article by exploring two approaches to regulatory issues.

Number of Pages in PDF File: 27

Keywords: bioethics, technology, medical, reproduction, ART, infertility, inheritance, science, gamete, embryo, synthetic, biology, genome, cell, regulatory, parentage, family, child, children

Open PDF in Browser Download This Paper

Date posted: September 8, 2011  

Suggested Citation

Knaplund, Kristine S., Synthetic Cells, Synthetic Life, and Inheritance (September 2011). Valparaiso University Law Review, Vol. 45, 2011; Pepperdine University Legal Studies Research Paper No. 2011/17. Available at SSRN: http://ssrn.com/abstract=1923801

Contact Information

Kristine S. Knaplund (Contact Author)
Pepperdine University School of Law ( email )
24255 Pacific Coast Highway
Malibu, CA 90263
United States
Feedback to SSRN

Paper statistics
Abstract Views: 648
Downloads: 80
Download Rank: 215,033
Footnotes:  122

© 2016 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollobot1 in 0.234 seconds