Abstract

http://ssrn.com/abstract=2290802
 


 



Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook


Dokyun Lee


Carnegie Mellon University - David A. Tepper School of Business

Kartik Hosanagar


University of Pennsylvania - Operations & Information Management Department

Harikesh Nair


Stanford University - Graduate School of Business

September 1, 2015


Abstract:     
We investigate the effect of social media advertising content on customer engagement via large-scale field study on Facebook. We content-code more than 100,000 messages across 800 companies using a combination of Amazon Mechanical Turk and state-of-the-art Natural Language Processing algorithms. We use this large-scale dataset of content attributes to test the effect of social media marketing content on subsequent user engagement defined as Likes, comments, shares, and click-throughs with the messages. We develop methods to account for potential selection biases that arise from Facebook’s filtering algorithm, EdgeRank, that assigns messages non-randomly to users. We find that inclusion of widely used content related to brand-personality like humor, emotion and brand’s philanthropic positioning increases consumer engagement with a message. We find that directly informative content like mentions of prices and availability reduce engagement when included in messages in isolation, but increase engagement when provided in combination with brand-personality related attributes. We also find certain directly informative content such as the mention of deals and promotions drive consumers’ path-to-conversion (click-throughs). Results suggest therefore that there may be substantial gains from content engineering by combining informative characteristics associated with immediate leads (via improved click-throughs) with brand-personality related content that help maintain future reach and branding on the social media site (via improved engagement). Our results inform content design strategies in social media, and the methodology we apply to content-code large-scale textual data provides a framework for future studies on unstructured data such as advertising content or product reviews.

Number of Pages in PDF File: 56

Keywords: consumer engagement, social media, advertising content, marketing communication, large-scale data, natural language processing, machine learning, selection, Facebook, EdgeRank, content engineering.

JEL Classification: M3


Open PDF in Browser Download This Paper

Date posted: September 26, 2013 ; Last revised: September 23, 2015

Suggested Citation

Lee, Dokyun and Hosanagar, Kartik and Nair, Harikesh, Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook (September 1, 2015). Available at SSRN: http://ssrn.com/abstract=2290802

Contact Information

Dokyun Lee (Contact Author)
Carnegie Mellon University - David A. Tepper School of Business ( email )
5000 Forbes Avenue
Pittsburgh, PA 15213-3890
United States

Kartik Hosanagar
University of Pennsylvania - Operations & Information Management Department ( email )
Philadelphia, PA 19104
United States

Harikesh Nair
Stanford University - Graduate School of Business ( email )
655 Knight Way
Stanford, CA 94305-5015
United States
650-736-4256 (Phone)
HOME PAGE: http://faculty-gsb.stanford.edu/nair/index.html

Feedback to SSRN


Paper statistics
Abstract Views: 8,095
Downloads: 2,325
Download Rank: 3,618

© 2016 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollobot1 in 1.500 seconds