References (49)


Citations (2)



Definition and Diagnosis of Problematic Attrition in Randomized Controlled Experiments

Fernando Martel García

Cambridge Social Science Decision Lab Inc.

May 26, 2013

Attrition is the Achilles' Heel of the randomized experiment: It is fairly common, and it can completely unravel the benefits of randomization. Using the structural language of causal diagrams I demonstrate that attrition is problematic for identification of the average treatment effect (ATE) if -- and only if -- it is a common effect of the treatment and the outcome (or a cause of the outcome other than the treatment). I also demonstrate that whether the ATE is identified and estimable for all units in the experiment, or only for those units with observed outcomes, depends on two d-separation conditions. One of these is testable ex-post under standard experimental assumptions. The other is testable ex-ante so long as adequate measurement protocols are adopted. Missing at Random (MAR) assumptions are neither necessary nor sufficient for identification of the ATE.

Number of Pages in PDF File: 53

Keywords: attrition, randomized controlled experiments, field experiments, causal diagrams, directed acyclic graphs, average treatment effect, nonparametric

Open PDF in Browser Download This Paper

Date posted: July 30, 2013  

Suggested Citation

Martel García, Fernando, Definition and Diagnosis of Problematic Attrition in Randomized Controlled Experiments (May 26, 2013). Available at SSRN: http://ssrn.com/abstract=2302735 or http://dx.doi.org/10.2139/ssrn.2302735

Contact Information

Fernando Martel García (Contact Author)
Cambridge Social Science Decision Lab Inc. ( email )
Washington, DC
United States
Feedback to SSRN

Paper statistics
Abstract Views: 501
Downloads: 83
Download Rank: 135,665
References:  49
Citations:  2

© 2015 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollo8 in 0.296 seconds