Abstract

http://ssrn.com/abstract=252190
 
 

References (48)



 
 

Citations (2)



 


 



What Drives the January Effect?


Honghui Chen


University of Central Florida

Vijay Singal


Virginia Tech

April 2001

Virginia Tech Working Paper

Abstract:     
The January anomaly has attracted much academic interest and has been explained in different ways. However, the multitude of explanations has created confusion about the validity and relative importance of those explanations. In some cases, the hypotheses are examined individually though the evidence may be consistent with more than one hypothesis. Furthermore, prior work has not adequately controlled for the bid-ask bounce. Therefore, the results leave the reader somewhat confused regarding the January effect: is it caused by tax-loss selling, window-dressing, information, bid-ask bounce, or a combination of these causes? In this paper, we try to disentangle different explanations of the January effect and identify its primary cause. We find that past losers are more likely to be sold in December than in January to realize the tax advantage of capital losses. Past winners are more likely to be sold in January than in December to postpone payment of taxes. The selling is accompanied by changes in volume around turn of the year consistent with the tax-related selling hypotheses. The results are not materially affected when we use the midpoint of quotes instead of actual prices: the bid-ask bounce accounts for about 20-25% of the observed returns.
To verify the window-dressing hypothesis, we examine stock returns around June-July, the period of semi-annual reporting by institutional managers that is not contaminated by tax-related trading. We do not find an economically meaningful difference between the 5-day return at the end of June and the 5-day return at the beginning of July, which is not consistent with window dressing.
If the January effect occurs due to release of new information in January that affects the information-poor firms more than the information-rich firms then the returns in January should be related to availability of information (for example, with the number of analysts as a proxy). We do not find a correlation consistent with the information hypothesis. There is no information-related effect in June-July. The evidence here supports the tax-related selling hypotheses as the drivers of January effect.

Number of Pages in PDF File: 47

Keywords: January Effect, Seasonality, Window-Dressing, Tax Loss Selling, Tax Gain Selling

JEL Classification: G14, G10

working papers series


Download This Paper

Date posted: December 11, 2000  

Suggested Citation

Chen, Honghui and Singal, Vijay, What Drives the January Effect? (April 2001). Virginia Tech Working Paper. Available at SSRN: http://ssrn.com/abstract=252190 or http://dx.doi.org/10.2139/ssrn.252190

Contact Information

Honghui Chen
University of Central Florida ( email )
PO Box 161400
Orlando, FL 32816
United States
407-823-0895 (Phone)
Vijay Singal (Contact Author)
Virginia Tech ( email )
Blacksburg, VA 24061
United States
5402317750 (Phone)
Feedback to SSRN


Paper statistics
Abstract Views: 5,148
Downloads: 1,643
Download Rank: 4,640
References:  48
Citations:  2

© 2014 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollo1 in 0.437 seconds