Abstract

http://ssrn.com/abstract=559861
 
 

References (15)



 


 



Estimation under Multicollinearity: Application of Restricted Liu and Maximum Entropy Estimators to the Portland Cement Dataset


Sudhanshu K. Mishra


North-Eastern Hill University (NEHU)

June 28, 2004



Abstract:     
A high degree of multicollinearity among the explanatory variables severely impairs estimation of regression coefficients by the Ordinary Least Squares. Several methods have been suggested to ameliorate the deleterious effects of multicollinearity.

In this paper we aim at comparing the Restricted Liu estimates of regression coefficients with those obtained by applying the Maximum Entropy Leuven (MEL) family of estimators on the widely analyzed dataset on Portland cement. This dataset has been obtained from an experimental investigation of the heat evolved during the setting and hardening of Portland cements of varied composition and the dependence of this heat on the percentage of four compounds in the clinkers from which the cement was produced. The relevance of the relationship between the heat evolved and the chemical processes undergone while setting takes place is best stated in the words of Woods et al.: "This property is of interest in the construction of massive works as dams, in which the great thickness severely hinder the outflow of the heat. The consequent rise in temperature while the cement is hardening may result in contractions and cracking when the eventual cooling to the surrounding temperature takes place."

Two alternative models have been formulated, the one with an intercept term (non-homogenous) that exhibits a very high degree of multicollinearity and the other with no intercept term (extended homogenous) that characterizes perfect multicollinearity.

Our findings suggest that several members of the MEL family of estimators outperform the OLS and the Restricted Liu estimators. The MEL estimators perform well even when perfect multicollinearity is there. A few of them may outperform the Minimum Norm LS (OLS+) estimator. Since the MEL estimators do not seek extra information from the analyst, they are easy to apply. Therefore, one may rely on the MEL estimators for obtaining the coefficients of a linear regression model under the conditions of severe (including perfect) multicollinearity among the explanatory variables.

Number of Pages in PDF File: 8

Keywords: Multicollinearity, Estimator, Restricted Liu, Maximum Entropy Leuven, MEL family, Modular Maximum Entropy Leuven, Least Absolute Deviation, Minimum Norm Least Squares, Moore-Penrose inverse, Portland cement dataset

JEL Classification: C13, C20

working papers series


Download This Paper

Date posted: June 30, 2004  

Suggested Citation

Mishra, Sudhanshu K., Estimation under Multicollinearity: Application of Restricted Liu and Maximum Entropy Estimators to the Portland Cement Dataset (June 28, 2004). Available at SSRN: http://ssrn.com/abstract=559861 or http://dx.doi.org/10.2139/ssrn.559861

Contact Information

Sudhanshu K. Mishra (Contact Author)
North-Eastern Hill University (NEHU) ( email )
NEHU Campus
Shillong, 793022
India
03642550102 (Phone)
HOME PAGE: http://www.nehu-economics.info
Feedback to SSRN


Paper statistics
Abstract Views: 1,549
Downloads: 160
Download Rank: 108,016
References:  15

© 2014 Social Science Electronic Publishing, Inc. All Rights Reserved.  FAQ   Terms of Use   Privacy Policy   Copyright   Contact Us
This page was processed by apollo5 in 0.297 seconds