Reduced Graphene-Oxide Doped Elastic Polyurethane Fibers for Cardiomyocyte Maturation
44 Pages Posted: 20 Sep 2023
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive environments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCM) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation. hiPSC-CMs on the PU-10%rGO membrane exhibited a stronger contraction compared to those on PU and PU-4%rGO membranes and revealed uniform and synchronous beating patterns. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Keywords: Biodegradable polyurethane, reduced graphene oxide, conductivity, cardiomyocytes, maturation
Suggested Citation: Suggested Citation