Daniel Hagemann

FOM University of Applied Sciences - ESSEN - FOM University of Applied Sciences, Student

Germany

SCHOLARLY PAPERS

1

DOWNLOADS

10

SSRN CITATIONS

0

CROSSREF CITATIONS

0

Scholarly Papers (1)

1.

Prognosemodelle für Länderrisiken: Logit- und Deep Learning-Methoden im Vergleich (Forecasting Sovereign Ratings with Logit Regression and Deep Learning: Quo vadis, Italia?)

ifes Schriftenreihe Band 18
Number of pages: 28 Posted: 18 Oct 2019
Frank Lehrbass and Daniel Hagemann
L*PARC (Lehrbass Predicitive Analytics and Risk Consulting) and FOM University of Applied Sciences - ESSEN - FOM University of Applied Sciences, Student
Downloads 10 (603,708)

Abstract:

Loading...

Country Risk, Sovereign Risk, Forecasting, Rating