Efficient Importance Sampling for ML Estimation of SCD Models
CORE Discussion Paper No. 2007/53
31 Pages Posted: 30 Aug 2007
Date Written: August 17, 2007
Abstract
The evaluation of the likelihood function of the stochastic conditional duration model requires to compute an integral that has the dimension of the sample size. We apply the efficient importance sampling method for computing this integral. We compare EIS-based ML estimation with QML estimation based on the Kalman filter. We find that EIS-ML estimation is more precise statistically, at a cost of an acceptable loss of quickness of computations. We illustrate this with simulated and real data. We show also that the EIS-ML method is easy to apply to extensions of the SCD model.
Keywords: stochastic conditional duration, importance sampling
JEL Classification: C13, C15, C41
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Luc Bauwens and J. V. K. Rombouts
-
Time-Varying Arrival Rates of Informed and Uninformed Trades
By David Easley, Liuren Wu, ...
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks
By Luc Bauwens and Pierre Giot
-
By Luc Bauwens and David Veredas
-
Identifying Bull and Bear Markets in Stock Returns
By John M. Maheu and Thomas H. Mccurdy