Tactical Industry Allocation and Model Uncertainty
36 Pages Posted: 2 Oct 2007
Abstract
We use Bayesian model averaging to analyze the sample evidence on industry return predictability within the U.S. stock market in the presence of model uncertainty. The posterior analysis shows the importance of inflation and earnings yield in predicting industry returns. The out-of-sample performance of the Bayesian approach is, in general, superior to that of other statistical model selection criteria. However, the out-of-sample forecasting power of a naive iid forecast is similar to the Bayesian forecast. A variance decomposition into model risk, estimation risk, and forecast error shows that model risk is less important than estimation risk.
Keywords: Bayesian Model Averaging, Tactical Asset Allocation
JEL Classification: G11, G12, G14
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Consumption, Aggregate Wealth and Expected Stock Returns
By Martin Lettau and Sydney C. Ludvigson
-
Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles
By Ravi Bansal and Amir Yaron
-
Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia are Time-Varying
By Martin Lettau and Sydney C. Ludvigson
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying
By Martin Lettau and Sydney C. Ludvigson