Download this Paper Open PDF in Browser

Asymmetric Learning in Repeated Contracting: An Empirical Study

34 Pages Posted: 25 Jan 2008 Last revised: 25 May 2017

Alma Cohen

Tel Aviv University - Eitan Berglas School of Economics; Harvard Law School; National Bureau of Economic Research (NBER)

Multiple version iconThere are 2 versions of this paper

Date Written: January 1, 2008

Abstract

This paper studies a unique panel dataset of transactions with repeat customers of an insurer that operates in a market in which insurers are not required by law or contract to share information about their customers’ records. This dataset is used to test the asymmetric learning hypothesis under which sellers obtain private information about repeat customers and this learning allows them to make higher profits from transactions with repeat customers. Consistent with this learning hypothesis, I find that the insurer in my dataset makes higher profits in transactions with repeat customers who have a good claims history with the insurer – customers about whom the insurer has positive private information not shared by other insurers; that the insurer provides these repeat customers with a reduction in premiums that is lower than the reduction in expected costs associated with such customers; and that policyholders who have bad claim histories with the insurer are more likely to flee their record by switching to other insurers.

An earlier version of this paper was circulated as “Profits and Market Power in Repeat Contracting: Evidence from the Insurance Market.”

Keywords: Repeat customers, asymmetric information, asymmetric learning, adverse selection, insurance, market power

JEL Classification: D40, D80, D82, D83, L10, G22

Suggested Citation

Cohen, Alma, Asymmetric Learning in Repeated Contracting: An Empirical Study (January 1, 2008). Review of Economics and Statistics, Vol. 94, No. 2 (2012); Harvard Law and Economics Discussion Paper No. 606. Available at SSRN: https://ssrn.com/abstract=1081896

Alma Cohen (Contact Author)

Tel Aviv University - Eitan Berglas School of Economics ( email )

Ramat Aviv, Tel Aviv, 69978
Israel

Harvard Law School ( email )

Cambridge, MA 02138
United States
(617) 496-4099 (Phone)
(617) 812-0554 (Fax)

National Bureau of Economic Research (NBER) ( email )

1050 Massachusetts Avenue
Cambridge, MA 02138
United States

Paper statistics

Downloads
346
Rank
68,170
Abstract Views
2,964