A Simple Approach to Pricing American Options Under the Heston Stochastic Volatility Model
Posted: 21 May 2019
Date Written: February 28, 2010
Abstract
In a recent paper, NBZ [2010] present a multidimensional transform for generating path-independent trees for pricing American options under low dimensional stochastic volatility models. For this class of models, this approach has higher accuracy than the GARCH tree method of Ritchken and Trevor [1999], and is computationally more efficient than the Monte Carlo regression method of Longstaff and Schwartz [2001] as well as the lattice method of Leisen [2000]. In this paper, we give an explicit demonstration of the NBZ transform using the specific example of the Heston [1993] stochastic volatility model. This approach obtains highly accurate American option prices within a fraction of a second using the control variate method.
Keywords: Heston, options, stochastic volatility, American options, trees
JEL Classification: G0, G11, G12, G13, G20, G21, G22, G23, G24
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Paper statistics
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo