Performance of Time-Varying Correlation Estimation Methods

45 Pages Posted: 23 Jun 2008 Last revised: 15 Feb 2010

See all articles by Ahmet K Karagozoglu

Ahmet K Karagozoglu

Hofstra University, Zarb School of Business

Michael Jacobs

Accenture Consulting

Date Written: February 2010

Abstract

This study evaluates and compares alternative time series correlation modeling techniques, using a broad database of 33 variables and 467 asset pairs in nine different asset classes. For each pair of assets a time-varying moving window correlation (MWC) is computed from different moving itional correlation (DCC) time series model, first documenting the closeness of various MWC estimates to DCC, and next evaluating the effectiveness of the models in a portfolio context. We consider four statistical measures of closeness to DCC. According to the concordance correlation coefficient, the Kolmogorov-Smirnov statistic, and the sign agreement test, across all asset pairs under consideration, the shorter to intermediate moving windows (252 days and below) tend to lie closest to DCC; whereas for the mean square error measure, longer windows tend to best match DCC. However, there are some patterns distinct to certain asset classes such as equity and credit, in which both mean square error and concordance correlation coefficient measures of closeness suggest that MWC match DCC estimates at shorter moving windows. In the portfolio management context, the economic closeness test based on 2,802 monthly rebalanced two-asset portfolios shows that generally MWCs are closer to DCC at the longer window lengths.

Keywords: Correlations, Forecasting, GARCH, DCC, Risk Management, Hedging

JEL Classification: C53, G11, G13, G19

Suggested Citation

Karagozoglu, Ahmet K and Jacobs, Michael, Performance of Time-Varying Correlation Estimation Methods (February 2010). Available at SSRN: https://ssrn.com/abstract=1149412 or http://dx.doi.org/10.2139/ssrn.1149412

Ahmet K Karagozoglu (Contact Author)

Hofstra University, Zarb School of Business ( email )

Department of Finance
134 Hofstra University
Hempstead, NY 11549
United States
(516) 463-5701 (Phone)
(718) 701-8331 (Fax)

HOME PAGE: http://people.hofstra.edu/ahmet_k_karagozoglu/

Michael Jacobs

Accenture Consulting ( email )

1345 Avenue of the Americas
New York, NY 10105
United States
9173242098 (Phone)

Register to save articles to
your library

Register

Paper statistics

Downloads
102
Abstract Views
1,061
rank
261,586
PlumX Metrics