A New Method of Robust Linear Regression Analysis: Some Monte Carlo Experiments

13 Pages Posted: 3 Jul 2008

Date Written: July 4, 2008


This paper has elaborated upon the deleterious effects of outliers and corruption of dataset on estimation of linear regression coefficients by the Ordinary Least Squares method. Motivated to ameliorate the estimation procedure, we have introduced the robust regression estimators based on Campbell's robust covariance estimation method. We have investigated into two possibilities: first, when the weights are obtained strictly as suggested by Campbell and secondly, when weights are assigned in view of the Hampel's median absolute deviation measure of dispersion. Both types of weights are obtained iteratively. Using these two types of weights, two different types of weighted least squares procedures have been proposed. These procedures are applied to detect outliers in and estimate regression coefficients from some widely used datasets such as stackloss, water salinity, Hawkins-Bradu-Kass, Hertzsprung-Russell Star and pilot-point datasets. It has been observed that Campbell-II in particular detects the outlier data points quite well. Subsequently, some Monte Carlo experiments have been carried out to assess the properties of these estimators. Findings of these experiments indicate that for larger number and size of outliers, the Campbell-II procedure outperforms the Campbell-I procedure. Unless perturbations introduced to the dataset are numerous and very large in magnitude, the estimated coefficients are also nearly unbiased.

Suggested Citation

Mishra, Sudhanshu K., A New Method of Robust Linear Regression Analysis: Some Monte Carlo Experiments (July 4, 2008). Available at SSRN: https://ssrn.com/abstract=1155135 or http://dx.doi.org/10.2139/ssrn.1155135

Sudhanshu K. Mishra (Contact Author)

North-Eastern Hill University (NEHU) ( email )

NEHU Campus
Shillong, 793022
03642550102 (Phone)

HOME PAGE: http://www.nehu-economics.info

Register to save articles to
your library


Paper statistics

Abstract Views
PlumX Metrics