Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators
28 Pages Posted: 21 Jul 2008
Date Written: May 2003
Abstract
We investigate the performance of a class of semiparametric estimators of the treatment effect via asymptotic expansions. We derive approximations to the first two moments of the estimator that are valid to 'second order'. We use these approximations to define a method of bandwidth selection. We also propose a degrees- of-freedom like bias correction that improves the second order properties of the estimator but without requiring estimation of higher order derivatives of the unknown propensity score. We provide some numerical calibrations of the results.
JEL Classification: C16, C53, G12
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Characterizing Selection Bias Using Experimental Data
By James J. Heckman, Hidehiko Ichimura, ...
-
Propensity Score Matching Methods for Non-Experimental Causal Studies
By Rajeev H. Dehejia and Sadek Wahba
-
Propensity Score Matching Methods for Non-Experimental Causal Studies
By Rajeev H. Dehejia and Sadek Wahba
-
Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs
By Orley Ashenfelter and David Card
-
Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs
By Rajeev H. Dehejia and Sadek Wahba
-
Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review
-
The Role of the Propensity Score in Estimating Dose-Response Functions
-
Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?
By Jeffrey A. Smith and Petra Todd
