Multiple Local Whittle Estimation in Stationary Systems
35 Pages Posted: 21 Jul 2008
Date Written: October 2007
Abstract
Moving from univariate to bivariate jointly dependent long memory time series introduces a phase parameter (gamma), at the frequency of principal interest, zero; for short memory series gamma = 0 automatically. The latter case has also been stressed under long memory, along with the "fractional differencing" case gamma = (delta_2 - delta_1)pi/2; where delta_1, delta_2 are the memory parameters of the two series. We develop time domain conditions under which these are and are not relevant, and relate the consequent properties of cross-autocovariances to ones of the (possibly bilateral) moving average representation which, with martingale difference innovations of arbitrary dimension, is used in asymptotic theory for local Whittle parameter estimates depending on a single smoothing number. Incorporating also a regression parameter (beta) which, when non-zero, indicates cointegration, the consistency proof of these implicitly-defined estimates is nonstandard due to the beta estimate converging faster than the others. We also establish joint asymptotic normality of the estimates, and indicate how this outcome can apply in statistical inference on several questions of interest. Issues of implementation are discussed, along with implications of knowing beta and of correct or incorrect specification of gamma, and possible extensions to higher-dimensional systems and nonstationary series.
JEL Classification: C32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Semiparametric Fractional Cointegration Analysis
By D. Marinucci
-
Root-N-Consistent Estimation of Weak Fractional Cointegration
-
Finite Sample Improvement in Statistical Inference with I(1) Processes
By D. Marinucci
-
Cointegration in Fractional Systems with Unkown Integration Orders
-
The Distance between Rival Nonstationary Fractional Processes
-
Instrumental Variables Estimation of Stationary and Nonstationary Cointegrating Regressions
-
Foreign Exchange, Fractional Cointegration and the Implied-Realized Volatility Relation
By Neil Kellard, Christian Dunis, ...