Optimal Hedging Strategy in Stock Index Futures Markets

Posted: 1 Sep 2008 Last revised: 11 Jan 2009

See all articles by Weijun Xu

Weijun Xu

affiliation not provided to SSRN

Li Yang

UNSW Australia Business School, School of Banking and Finance; Financial Research Network (FIRN)

Date Written: September 1, 2008

Abstract

In this paper we search for optimal hedging strategy in stock index futures markets. We concentrate on the strategy that minimizes the portfolio risk, i.e., minimum variance hedge ratio (MVHR) estimated from a range of time series models with different assumptions of market volatility. They are linear regression models that assume time-invariant volatility; GARCH-type models that assume time-varying volatility, Markov regime switching (MRS) regression models that assume state-varying volatility, and MRS GARCH models that assume both time-varying and state-varying volatility. We use both maximum likelihood estimation (MLE) and Bayesian Gibbs-sampling approach to estimate the models in four commonly used index futures contracts: S&P 500, FTSE 100, Nikkei 225 and Hang Seng index. We apply risk reduction and utility maximization criterions to evaluate hedging performance of MVHRs estimated from these models. The in-sample results show that the optimal hedging strategy for the S&P 500 and the Hang Seng index futures contracts is the MVHR estimated using the MRS-OLS model, while the optimal hedging strategy for the Nikkei 225 and the FTSE 100 futures contracts is the MVHR estimated using the asymmetric-Diagonal-BEKK-GARCH and the asymmetric-DCC-GARCH model, respectively. As in the out-of-sample investigation, the optimal strategy for the S&P 500 index futures remains unchanged while the optimal strategy for other futures contracts is different from the in-sample results. The MVHR estimated from the MRS-VECM model perform the best for the Nikkei 225 futures contract. The scalar-BEEK-GARCH model delivers the optimal strategy for both the FTSE 100 and the Hang Seng index futures contracts. Overall the evidence suggests that there is no single model that can consistently produce the best strategy across different index futures contracts. Using a more sophisticated model such as MRS-MGARCH model does not necessarily improve hedging efficiency. However, there is evidence that using Bayesian Gibbs-sampling approach to estimate the MRS models provides investors more efficient hedging strategy compared with the MLE method.

Keywords: Minimum variance hedge ratio, MGARCH models, Markov regime switching models, Bayesian Gibbs-sampling, Index futures contracts

JEL Classification: G13, G15, C53, C11

Suggested Citation

Xu, Weijun and Yang, Li, Optimal Hedging Strategy in Stock Index Futures Markets (September 1, 2008). 21st Australasian Finance and Banking Conference 2008 Paper. Available at SSRN: https://ssrn.com/abstract=1261709

Weijun Xu

affiliation not provided to SSRN ( email )

No Address Available

Li Yang (Contact Author)

UNSW Australia Business School, School of Banking and Finance ( email )

Sydney, NSW 2052
Australia
+610293855857 (Phone)

Financial Research Network (FIRN)

C/- University of Queensland Business School
St Lucia, 4071 Brisbane
Queensland
Australia

HOME PAGE: http://www.firn.org.au

Here is the Coronavirus
related research on SSRN

Paper statistics

Abstract Views
2,329
PlumX Metrics