Bayesian Analysis and Model Revision for Kã¢Â¬Â"Th Order Markov Chains with Unknown K.

36 Pages Posted: 9 Oct 2008

See all articles by Roy Radner

Roy Radner

Leonard N. Stern School of Business - Department of Economics

Date Written: October 2002

Abstract

mass 1 concentrated on the true process, provided that the prior probability measurehas full support and the true process is irreducible. Second, I extend this result to thecase in which k is unbounded (but finite), which requires that the Bayesian decisionmaker(DM) construct a prior on an infinite-dimensional parameter space. Finally, inan alternative approach to this case, I suppose that the DM considers a succession ofmodels corresponding to larger and larger values of k. Each time the DM revises hismodel he extends his prior probability measure to the new - and larger - parameterspace in a way that is "consistent" with the previous prior, and recomputes his posteriorprobability measures. I show that, roughly speaking, if the DM does not revisehis model â¬ÂStoo frequently,â¬Â? then he will be increasingly confident that the currentposterior is increasingly concentrated on the true process. I motivate the procedureof model revision by considerations of bounded rationality.

Keywords: Bayesian analysis, model revision, bounded rationality

Suggested Citation

Radner, Roy, Bayesian Analysis and Model Revision for Kã¢Â¬Â"Th Order Markov Chains with Unknown K. (October 2002). Information Systems Working Papers Series, Vol. , pp. -, 2002. Available at SSRN: https://ssrn.com/abstract=1281328

Roy Radner (Contact Author)

Leonard N. Stern School of Business - Department of Economics ( email )

44 West Fourth Street, 7-180
New York, NY 10012
United States

Register to save articles to
your library

Register

Paper statistics

Downloads
29
Abstract Views
381
PlumX Metrics