Using Structural Models for Default Prediction
61 Pages Posted: 26 Nov 2008
There are 2 versions of this paper
Using Structural Models for Default Prediction
Using Structural Models for Default Prediction
Date Written: November 25, 2008
Abstract
I propose a new procedure for extracting probabilities of default from structural credit risk models based on virtual credit spreads (VCS) and implement this approach assuming a simple Merton (1974) model of capital structure. VCS are derived from the increase in the payout to debtholders necessary to offset the impact of an increase in asset variance on the option value of debt and equity. In contrast to real-world credit spreads, VCS do not contain risk premia for default timing and recovery uncertainty, thus yielding a purer estimate of physical default probabilities. Relative to the Merton distance to default (DD) measure, my measure (i) predicts higher credit risk for safe firms and lower credit risk for firms with high volatility and leverage (ii) requires fewer parameter assumptions (iii) clearly outperforms the DD measure when used to predict corporate default.
Keywords: Structural Credit Risk Models, Bankruptcy Prediction, Risk-Neutral Pricing
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Default Risk in Equity Returns
By Maria Vassalou and Yuhang Xing
-
News Related to Future GDP Growth as a Risk Factor in Equity Returns
-
News Related to Future GDP Growth as Risk Factors in Equity Returns
-
By John Y. Campbell, Jens Hilscher, ...
-
By John Y. Campbell, Jens Hilscher, ...
-
Forecasting Default with the Kmv-Merton Model
By Sreedhar T. Bharath and Tyler Shumway
-
Exchange Rate and Foreign Inflation Risk Premiums in Global Equity Returns
-
By Maria Vassalou and Yuhang Xing
-
Bankruptcy Prediction With Industry Effects
By Sudheer Chava and Robert A. Jarrow