Variable Selection and Inference for Multi-Period Forecasting Problems
40 Pages Posted: 11 Feb 2009
There are 2 versions of this paper
Variable Selection and Inference for Multi-Period Forecasting Problems
Variable Selection and Inference for Multi-Period Forecasting Problems
Date Written: February 1, 2009
Abstract
This paper conducts a broad-based comparison of iterated and direct multi-step forecasting approaches applied to both univariate and multivariate models. Theoretical results and Monte Carlo simulations suggest that iterated forecasts dominate direct forecasts when estimation error is a first-order concern, i.e. in small samples and for long forecast horizons. Conversely, direct forecasts may dominate in the presence of dynamic model misspecification. Empirical analysis of the set of 170 variables studied by Marcellino, Stock and Watson (2006) shows that multivariate information, introduced through a parsimonious factor-augmented vector autoregression approach, improves forecasting performance for many variables, particularly at short horizons.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Real-Time Inflation Forecasting in a Changing World
By Jan J. Groen, Richard Paap, ...
-
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics
By Gary Koop and Dimitris Korobilis
-
Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns
By John Geweke and Gianni Amisano
-
Forecasting Inflation Using Dynamic Model Averaging
By Gary Koop and Dimitris Korobilis
-
Real-Time Density Forecasts from VARs with Stochastic Volatility
-
Assessing the Transmission of Monetary Policy Shocks Using Dynamic Factor Models
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...