Can the Black-Scholes-Merton Model Survive under Transaction Costs? An Affirmative Answer

48 Pages Posted: 22 Mar 2009

See all articles by Stylianos Perrakis

Stylianos Perrakis

Concordia University, Quebec - John Molson School of Business

Date Written: March, 18 2009

Abstract

We derive a reservation purchase price for a call option price under proportional transaction costs. The price is derived in discrete time for a general distribution of the returns of the underlying asset, as in Constantinides and Perrakis (CP, 2002, 2007). We then consider a lognormal diffusion model of these returns, and we formulate a discrete time trading version that converges to diffusion as the time partition becomes progressively more dense. Given the existence of a partition-independent and tight upper bound already derived in CP (2002), we focus on the lower bound. We show that the CP approach results in a lower bound for European call options that converges to a non-trivial and tight limit that is a function of the transaction cost parameter. This limit defines a reservation purchase price under realistic trading conditions for the call options and becomes equal to the exact Black-Scholes-Merton value if the transaction cost parameter is set equal to zero. We also develop a novel numerical algorithm that computes the CP lower bound for any discrete time partition and converges to the theoretical continuous time limit in a relatively small number of iterations. Last, we extend the lower bound results to American index and index futures options.

Keywords: option pricing, option bounds, incomplete markets, stochastic dominance, transaction costs, diffusion processes

JEL Classification: G12,G13

Suggested Citation

Perrakis, Stylianos, Can the Black-Scholes-Merton Model Survive under Transaction Costs? An Affirmative Answer (March, 18 2009). Available at SSRN: https://ssrn.com/abstract=1364118 or http://dx.doi.org/10.2139/ssrn.1364118

Stylianos Perrakis (Contact Author)

Concordia University, Quebec - John Molson School of Business ( email )

1455 de Maisonneuve Blvd. W.
Montreal, Quebec H3G 1M8
Canada

Register to save articles to
your library

Register

Paper statistics

Downloads
96
Abstract Views
605
rank
274,676
PlumX Metrics