Proximity-Structured Multivariate Volatility Models
30 Pages Posted: 21 May 2009 Last revised: 12 May 2013
Date Written: December 2012
Abstract
In many multivariate volatility models, the number of parameters increases faster than the cross-section dimension, hence creating a curse of dimensionality problem. This paper discusses specification and identification of structured parameterizations based on weight matrices induced by economic proximity. It is shown that structured specifications can mitigate or even solve the curse of dimensionality problem. Identification and estimation of structured specifications are analyzed, rank and order conditions for identification are given and the specification of weight matrices is discussed. Several structured specifications compare well with alternatives in modelling conditional covariances of six returns from the New York Stock Exchange.
Keywords: MGARCH, Stochastic Volatility, Realized Volatility, spatial models, ANOVA
JEL Classification: C31, C32, G11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Measuring and Testing the Impact of News on Volatility
By Robert F. Engle and Victor K. Ng
-
Caviar: Conditional Value at Risk by Quantile Regression
By Simone Manganelli and Robert F. Engle
-
Dynamic Conditional Correlation - a Simple Class of Multivariate GARCH Models
-
Dynamic Conditional Correlation a Simple Class of Multivariate GARCH Models
-
Dynamic Conditional Correlation - a Simple Class of Multivariate GARCH Models
-
Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models
-
Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills
By Robert F. Engle, Victor Ng, ...
-
Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH
By Kevin Sheppard and Robert F. Engle
-
Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH
By Robert F. Engle and Kevin Sheppard
-
Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH
By Robert F. Engle and Kevin Sheppard