Generating Functions and Short Recursions, with Applications to the Moments of Quadratic Forms in Noncentral Normal Vectors
44 Pages Posted: 28 May 2009 Last revised: 11 Jan 2013
Date Written: January 8, 2013
Abstract
Recursive relations for objects of statistical interest have long been important for computation, and remain so even with hugely improved computing power. Such recursions are frequently derived by exploiting relations between generating functions. For example, the top-order zonal polynomials that occur in much distribution theory under normality can be recursively related to other (easily computed) symmetric functions (power-sum and elementary symmetric functions, Ruben (1962), Hillier, Kan, and Wang (2009)). Typically, in a recursion of this type the k-th object of interest, d_k say, is expressed in terms of all lower-order d_j's. In Hillier, Kan, and Wang (2009) we pointed out that, in the case of top-order zonal polynomials and other invariant polynomials of multiple matrix argument, a fixed length recursion can be deduced. We refer to this as a short recursion. The present paper shows that the main results in Hillier, Kan, and Wang (2009) can be generalized, and that short recursions can be obtained for a much larger class of objects/generating functions. As applications, we show that short recursions can be obtained for various problems involving quadratic forms in noncentral normal vectors, including moments, product moments, and expectations of ratios of powers of quadratic forms. For this class of problems, we also show that the length of the recursion can be further reduced by an application of a generalization of Horner's method (c.f. Brown (1986)), producing a super-short recursion that is significantly more efficient than even the short recursion.
Keywords: Generating functions, Quadratic forms, Ratio of quadratic forms
JEL Classification: E10, H10
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Portfolio Selection and Asset Pricing Models
By Lubos Pastor
-
A Test for the Number of Factors in an Approximate Factor Model
-
Comparing Asset Pricing Models: an Investment Perspective
By Lubos Pastor and Robert F. Stambaugh
-
Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps
By Tongshu Ma and Ravi Jagannathan
-
On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model
By Louis K.c. Chan, Jason J. Karceski, ...
-
Honey, I Shrunk the Sample Covariance Matrix
By Olivier Ledoit and Michael Wolf
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Constraints and the Fundamental Law of Active Management