Co-Integration Rank Testing under Conditional Heteroskedasticity
CREATES Research Paper No. 2009-22
48 Pages Posted: 28 May 2009
Date Written: May 28, 2009
Abstract
We analyse the properties of the conventional Gaussian-based co-integrating rank tests of Johansen (1996) in the case where the vector of series under test is driven by globally stationary, conditionally heteroskedastic (martingale difference) innovations. We first demonstrate that the limiting null distributions of the rank statistics coincide with those derived by previous authors who assume either i.i.d. or (strict and covariance) stationary martingale difference innovations. We then propose wild bootstrap implementations of the co-integrating rank tests and demonstrate that the associated bootstrap rank statistics replicate the first-order asymptotic null distributions of the rank statistics. We show the same is also true of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006). The wild bootstrap, however, has the important property that, unlike the i.i.d. bootstrap, it preserves in the re-sampled data the pattern of heteroskedasticity present in the original shocks. Consistent with this, numerical evidence suggests that, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples under a variety of conditionally heteroskedastic innovation processes. An empirical application to the term structure of interest rates is given.
Keywords: Co-integration, trace and maximum eigenvalue rank tests, conditional heteroskedasticity, i.i.d. bootstrap, wild bootstrap
JEL Classification: C30, C32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Adaptive Estimation of Autoregression Models with Time-Varying Variances
By Ke-li Xu and Peter C. B. Phillips
-
Adaptive Estimation of Autoregressive Models with Time-Varying Variances
By Ke-li Xu and Peter C. B. Phillips
-
Testing for Co-Integration in Vector Autoregressions with Non-Stationary Volatility
By Giuseppe Cavaliere, Anders Rahbek, ...
-
Semiparametric Cointegrating Rank Selection
By Xu Cheng and Peter C. B. Phillips
-
Cointegrating Rank Selection in Models with Time-Varying Variance
By Xu Cheng and Peter C. B. Phillips