Analytical Pricing of Double-Barrier Options under a Double-Exponential Jump Diffusion Process: Applications of Laplace Transform
International Journal of Theoretical and Applied Finance, Vol. 7, No. 2, pp. 151-175, 2004
24 Pages Posted: 31 May 2009
Date Written: August 22, 2003
Abstract
We derive explicit formulas for pricing double (single) barrier and touch options with time-dependent rebates assuming that the asset price follows a double-exponential jump diffusion process. We also consider incorporating time-dependent volatility. Assuming risk-neutrality, the value of a barrier option satisfies the generalized Black-Scholes equation with the appropriate boundary conditions. We take the Laplace transform of this equation in time and solve it explicitly. Option price and risk parameters are computed via the numerical inversion of the corresponding solution. Numerical examples reveal that the pricing formulas are easy to implement and they result in accurate prices and risk parameters. Proposed formulas allow fast computing of smile-consistent prices of barrier and touch options.
Keywords: jump diffusion processes, exponential jumps, volatility smile, option pricing, path-dependent options, double barrier options, double touch options, Laplace transform
JEL Classification: C00, G00
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
A Jump Diffusion Model for Option Pricing
By Steven Kou
-
Option Pricing Under a Double Exponential Jump Diffusion Model
By Steven Kou and Hui Wang
-
A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes
-
The Term Structure of Simple Forward Rates with Jump Risk
By Paul Glasserman and Steven Kou
-
A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes
By Roger Lord, Fang Fang, ...
-
From Local Volatility to Local Levy Models
By Peter Carr, Hélyette Geman, ...
-
Interest Rate Option Pricing with Poisson-Gaussian Forward Rate Curve Processes
-
By Liming Feng and Vadim Linetsky
-
By Liming Feng and Vadim Linetsky