Multivariate Sarmanov Count Data Models
34 Pages Posted: 7 Oct 2009
Date Written: September 2009
Abstract
I present two flexible models of multivariate, count data regression that make use of the Sarmanov family of distributions. This approach overcomes several existing difficulties to extend Poisson regressions to the multivariate case, namely: i) it is able to account for both over and underdispersion, ii) it allows for correlations of any sign among the counts, iii) correlation and dispersion depend on different parameters, and iv) constrained maximum likelihood estimation is computationally feasible. Models can be extended beyond the bivariate case. I estimate the bivariate versions of two of these models to address whether the pricing strategies of competing duopolists in the early U.S. cellular telephone industry can be considered strategic complements or substitutes. I show that a Sarmanov model with double Poisson marginals outperforms the alternative count data model based on a multivariate renewal process with gamma distributed arrival times because the latter imposes very restrictive constraints on the valid range of the correlation coefficients.
Keywords: Double Poisson, Gamma, Multivariate Count Data Models, Sarmanov Distributions, Tariff Options
JEL Classification: C16, C35, L11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Partha Deb and Pravin K. Trivedi
-
Flexible Bivariate Count Data Regression Models
By Shiferaw Gurmu and John Elder
-
By Vincenzo Atella, Francesco Brindisi, ...
-
By Vincenzo Atella and Partha Deb
-
Public Vs. Private Health Care Services Demand in Italy
By Daniele Fabbri and Chiara Monfardini
-
By Terence Chai Cheng and Farshid Vahid
-
By Daniele Fabbri and Chiara Monfardini
-
By Ardeshir Sepehri, Sisira Sarma, ...
-
Semiparametric Mixture Models for Multivariate Count Data, with Application
By Giovanni Trovato and Marco Alfò