Forecasting Expected Shortfall with a Generalized Asymmetric Student-T Distribution
19 Pages Posted: 12 Nov 2009
Date Written: May 1, 2009
Abstract
Financial returns typically display heavy tails and some skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using a recent generalization of the asymmetric Student-t distribution to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial returns and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distribution is used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide empirical evidence for the usefulness of the generalized distribution in improving prediction of downside market risk of financial assets.
Keywords: asymmetric distribution, expected shortfall, GARCH model
JEL Classification: C16, G10
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Skewed Generalized Error Distribution of Financial Assets and Option Pricing
-
Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions
By Stefan Mittnik and Marc S. Paolella
-
A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics
By John W. Galbraith and Dongming Zhu
-
Equilibrium Asset Pricing: With Non-Gaussian Factors and Exponential Utilities
-
Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models
By Panayiotis Theodossiou, James Mcdonald, ...
-
Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models
By Christian Hansen, James Mcdonald, ...
-
Estimating Flexible, Fat-Tailed Asset Return Distributions
By Craig A. Friedman, Yangyong Zhang, ...
-
Real Extreme R&D Discovery Options
By Wilson Koh and Dean A. Paxson