Dimension Reduction and Model Averaging for Estimation of Artists’ Age-Valuation Profiles
18 Pages Posted: 15 Nov 2009
Date Written: September 1, 2009
Abstract
In hedonic regression models of the valuation of works of art, the age at which an artist produces a particular work, or an indicator variable for periods in his or her artistic career, is often found to have highly significant predictive value. Most existing results are based on regressions that pool large groups of painters. Although it is of interest to estimate such regressions for individual artists, the sample sizes are often inadequate for a model that would also include the large number of other relevant variables. We address this problem of inadequate degrees of freedom in individual artist regressions by using two statistical methods (model averaging and dimension reduction) to incorporate information from a potentially large number of predictor variables, allowing us to work with relatively small samples. We find that individual age-valuation profiles can differ substantially from general pooled profiles, suggesting that methods that are more responsive to the unique features of individual artists may provide better predictions of art valuations at auction.
Keywords: Dimension reduction, factor-augmented model, model averaging
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Art as an Investment and the Underperformance of Masterpieces
By Jianping Mei and Michael Moses
-
Art as an Investment and the Underperformance of Masterpieces
By Jiangping Mei and Michael Moses
-
How Did Japanese Investments Influence International Art Prices?
By Takato Hiraki, Akitoshi Ito, ...
-
The Careers of Modern Artists: Evidence from Auctions of Contemporary Paintings
-
Testing for Reference Dependence: An Application to the Art Market
By Alan Beggs and Kathryn Graddy
-
The Collateral Value of Fine Art
By Rex Thompson and Clare Mcandrew