Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities
Riksbank Research Paper Series No. 64
Sveriges Riksbank Working Paper Series No. 233
24 Pages Posted: 4 Mar 2010 Last revised: 28 Nov 2023
Date Written: October 1, 2009
Abstract
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the components, the mean, degrees of freedom, scale and skewness, are all modeled as functions of the covariates. Inference is Bayesian and the computation is carried out using Markov chain Monte Carlo simulation. To enable model parsimony, a variable selection prior is used in each set of covariates and among the covariates in the mixing weights. The model is used to analyse the distribution of daily stock market returns, and shown to more accurately forecast the distribution of returns than other widely used models for financial data.
Keywords: Bayesian Inference, Markov Chain Monte Carlo, Mixture of Experts, Variable Selection, Volatility Modeling
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Real-Time Inflation Forecasting in a Changing World
By Jan J. Groen, Richard Paap, ...
-
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics
By Gary Koop and Dimitris Korobilis
-
Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns
By John Geweke and Gianni Amisano
-
Forecasting Inflation Using Dynamic Model Averaging
By Gary Koop and Dimitris Korobilis
-
Real-Time Density Forecasts from VARs with Stochastic Volatility
-
Assessing the Transmission of Monetary Policy Shocks Using Dynamic Factor Models
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...