Complicated Firms
49 Pages Posted: 15 Mar 2010 Last revised: 19 Apr 2016
Date Written: June 13, 2011
Abstract
We exploit a novel setting in which the same piece of information affects two sets of firms: one set of firms requires straightforward processing to update prices, while the other set requires more complicated analyses to incorporate the same piece of information into prices. We document substantial return predictability from the set of easy-to-analyze firms to their more complicated peers. Specifically, a simple portfolio strategy that takes advantage of this straightforward vs. complicated information processing classification yields returns of 118 basis points per month. Consistent with processing complexity driving the return relation, we further show that the more complicated the firm, the more pronounced the return predictability. In addition, we find that sell-side analysts are subject to these same information processing constraints, as their forecast revisions of easy-to-analyze firms predict their future revisions of more complicated firms.
Keywords: Complicated trades, return predictability, stand alone, conglomerate, market frictions
JEL Classification: G10, G11, G14
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Limited Attention, Information Disclosure, and Financial Reporting
-
Investor Psychology in Capital Markets: Evidence and Policy Implications
By Kent D. Daniel, David A. Hirshleifer, ...
-
Market Frictions, Price Delay, and the Cross-Section of Expected Returns
By Kewei Hou and Tobias J. Moskowitz
-
Do Investors Overvalue Firms with Bloated Balance Sheets?
By David A. Hirshleifer, Kewei Hou, ...
-
Why Do New Issues and High-Accrual Firms Underperform: The Role of Analysts' Credulity
By Siew Hong Teoh and T.j. Wong
-
Driven to Distraction: Extraneous Events and Underreaction to Earnings News
By David A. Hirshleifer, Sonya S. Lim, ...
-
Industry Information Diffusion and the Lead-Lag Effect in Stock Returns
By Kewei Hou
-
Learning with Information Capacity Constraints
By Lin Peng