Are ‘Qualitative’ and ‘Quantitative’ Useful Terms for Describing Research?

Methodological Innovations Online, 2010

28 Pages Posted: 5 Apr 2010

See all articles by Michael Wood

Michael Wood

University of Portsmouth

Christine Welch

University of Portsmouth

Date Written: March 31, 2010


We examine the concepts of quantitative research and qualitative research, and argue that this dichotomy has several dimensions which are often, erroneously, assumed to coincide. We analyse two of the important dimensions – statistical versus non-statistical, and hypothesis testing versus induction. The crude quantitative-qualitative dichotomy omits many potentially useful possibilities, such as non-statistical hypothesis testing and statistical induction. We also argue that the first dimension can be extended to include establishing deterministic laws and the consideration of fictional scenarios; and the second to include “normal science” research based on questions defined by an established paradigm. These arguments mean that the possible types of research methods are more diverse than is often assumed, and that the terms “quantitative” and “qualitative” are best avoided, although other, more specific, terms are useful. One important sense in which the term “qualitative” is used is simply to refer to the use of data which yields a deep and detailed picture of the subject matter: we suggest the use of the word “rich” to describe such data.

Keywords: Qualitative research, Quantitative research, Hypothesis testing, Induction, Statistics, Fiction

Suggested Citation

Wood, Michael and Welch, Christine, Are ‘Qualitative’ and ‘Quantitative’ Useful Terms for Describing Research? (March 31, 2010). Methodological Innovations Online, 2010, Available at SSRN:

Michael Wood (Contact Author)

University of Portsmouth ( email )

United Kingdom

Christine Welch

University of Portsmouth ( email )

University House
Winston Churchhill Avenue
Portsmouth, Hampshire PO1 2UP
United Kingdom

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Abstract Views
PlumX Metrics