The Economic Value of Nonlinear Predictions in Asset Allocation
30 Pages Posted: 9 May 2010 Last revised: 30 Jan 2012
Date Written: January 2012
Abstract
Predictions of asset returns and volatilities are heavily discussed and analyzed in the finance research literature. In this paper, we compare linear and nonlinear predictions for stock- and bond index returns and their covariance matrix. We show in-sample and out-of-sample prediction accuracy as well as their impact on asset allocation results for short-horizon investors. Our data comprises returns from the German DAX stock market index and the REXP bond market index as well as their joint covariance matrix over the period 01/1988 - 12/2007.
The comparison of a linear and nonlinear prediction approach is the focus of this study. The results show that while out-of-sample prediction accuracies are weak in terms of statistical significance, asset allocation performances based on linear predictions result in significant Jensen's alpha measures and Sharpe-ratio and are further improved by nonlinear predictions.
Keywords: nonlinear prediction, neural networks, asset allocation
JEL Classification: C32, C45, C53, G11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Consumption, Aggregate Wealth and Expected Stock Returns
By Martin Lettau and Sydney C. Ludvigson
-
Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles
By Ravi Bansal and Amir Yaron
-
Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia are Time-Varying
By Martin Lettau and Sydney C. Ludvigson
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying
By Martin Lettau and Sydney C. Ludvigson