Estimating Flexible, Fat-Tailed Asset Return Distributions
39 Pages Posted: 20 Jun 2010 Last revised: 10 Apr 2012
Date Written: April 9, 2012
Abstract
We introduce new robust numerical methods, based on the minimum relative U−entropy (MRUE) principle, to estimate univariate probability density functions for power-law (fat-tailed) random variables. The semi-parametric models that we estimate via convex programming are flexible enough to conform well to potentially plentiful data for not-too-extreme values, while allowing for power-law tails (which need not be symmetric). We observe that a number of well-known power-law models, including the exponential, Pareto, Student-t, and skewed generalized-t (SGT) distributions, are special cases of the family of power-law probability densities that we consider. We benchmark our method against state-of-the-art asset return models on S&P500 index returns, individual stock returns, and power price returns and find that our models outperform the benchmarks out-of-sample. We attribute this out-performance to simultaneously conforming to data where it is plentiful, while building in reasonably conservative tails.
Keywords: Minimum Relative U−Entropy, Probability Distribution, Fattailed, Power-Law Distribution, Financial Data, Asset Returns
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Skewed Generalized Error Distribution of Financial Assets and Option Pricing
-
Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions
By Stefan Mittnik and Marc S. Paolella
-
A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics
By John W. Galbraith and Dongming Zhu
-
Equilibrium Asset Pricing: With Non-Gaussian Factors and Exponential Utilities
-
Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models
By Panayiotis Theodossiou, James Mcdonald, ...
-
Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models
By Christian Hansen, James Mcdonald, ...
-
Real Extreme R&D Discovery Options
By Wilson Koh and Dean A. Paxson
-
Generalized Beta-Generated Distributions
By Carol Alexander, Gauss Cordeiro, ...