High Frequency Covariance Estimates with Noisy and Asynchronous Financial Data
37 Pages Posted: 28 Jun 2010
Date Written: June 1, 2010
Abstract
This paper proposes a consistent and efficient estimator of the high frequency covariance (quadratic covariation) of two arbitrary assets, observed asynchronously with market microstructure noise. This estimator is built upon the marriage of the quasi-maximum likelihood estimator of the quadratic variation and the proposed Generalized Synchronization scheme. It is therefore not influenced by the Epps effect. Moreover, the estimation procedure is free of tuning parameters or bandwidths and readily implementable. The Monte Carlo simulations show the advantage of this estimator by comparing it with a variety of estimators with specific synchronization methods. The empirical studies of six foreign exchange future contracts illustrate the time-varying correlations of the currencies during the global financial crisis in 2008, discovering the similarities and differences in their roles as key currencies in the global market.
Keywords: Market microstructure noise, Covariance, Quasi-Maximum Likelihood Estimator, Refresh Time, Generalized Synchronization
JEL Classification: C13, C22
Suggested Citation: Suggested Citation
Do you have negative results from your research you’d like to share?
Recommended Papers
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Realized Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Stock Return Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
Range-Based Estimation of Stochastic Volatility Models
By Sassan Alizadeh, Michael W. Brandt, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen, Tim Bollerslev, ...