Monthly Forecasting of French GDP: A Revised Version of the Optim Model
49 Pages Posted: 17 Sep 2010
Date Written: September 1, 2008
Abstract
This paper presents a revised version of the model OPTIM, proposed by Irac and Sédillot (2002), used at the Banque de France in order to predict French GDP quarterly growth rate, for the current and next quarters. The model is designed to be used on a monthly basis by integrating monthly economic information through bridge models, for both supply and demand sides of GDP. For each GDP component, bridge equations are specified by using a general-to-specific approach implemented in an automated way by Hoover and Perez (1999) and improved by Krolzig and Hendry (2001). This approach allows to select explanatory variables among a large data set of hard and soft data. The final choice of equations relies on a recursive forecast study, which also helps to assess the forecasting performance of the revised OPTIM model in the prediction of aggregated GDP. This study is based on pseudo real-time forecasts taking publication lags into account . It turns out that the model outperforms benchmark models.
Keywords: GDP forecasting, Bridge models, General-to-specific approach
JEL Classification: C52, C53, E20
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting
By Mario Forni, Marc Hallin, ...
-
Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets
-
By James H. Stock and Mark W. Watson
-
Monetary Policy in a Data-Rich Environment
By Ben S. Bernanke and Jean Boivin
-
Eurocoin: A Real Time Coincident Indicator of the Euro Area Business Cycle
By Filippo Altissimo, Antonio Bassanetti, ...
-
Are More Data Always Better for Factor Analysis?
By Jean Boivin and Serena Ng
-
Implications of Dynamic Factor Models for VAR Analysis
By James H. Stock and Mark W. Watson
-
By Domenico Giannone, Lucrezia Reichlin, ...
-
By Domenico Giannone, Lucrezia Reichlin, ...