A Generalised Dynamic Factor Model for the Belgian Economy - Useful Business Cycle Indicators and GDP Growth Forecasts
National Bank of Belgium Working Paper No. 80
46 Pages Posted: 12 Oct 2010
Date Written: February 27, 2006
Abstract
This paper aims to extract the common variation in a data set of 509 conjunctural series as an indication of the Belgian business cycle. The data set contains information on business and consumer surveys of Belgium and its neighbouring countries, macroeconomic variables and some worldwide watched indicators such as the ISM and the OECD confidence indicators. The statistical framework used is the One-sided Generalised Dynamic Factor Model developed by Forni, Hallin, Lippi and Reichlin (2005). The model splits the series in a common component, driven by the business cycle, and an idiosyncratic component. Well-known indicators such as the EC economic sentiment indicator for Belgium and the NBB overall synthetic curve contain a high amount of business cycle information. Furthermore, the richness of the model allows to determine the cyclical properties of the series and to forecast GDP growth all within the same unified setting. We classify the common component of the variables into leading, lagging and coincident with respect to the common component of quarter-on-quarter GDP growth. 22% of the variables are found to be leading. Amongst the most leading variables we find asset prices and international confidence indicators such as the ISM and some OECD indicators. In general, national business confidence surveys are found to coincide with Belgian GDP, while they lead euro area GDP and its confidence indicators. Consumer confidence seems to lag. Although the model captures the dynamic common variation contained in the data set, forecasts based on that information are insufficient to deliver a good proxy for GDP growth as a result of a nonnegligible idiosyncratic part in GDP's variance. Lastly, we explore the dependence of the model's results on the data set and show through a data reduction process that the idiosyncratic part of GDP's quarter-on-quarter growth can be dramatically reduced. However, this does not improve the forecasts.
Keywords: Dynamic factor model, business cycle, leading indicators, forecasting, data reduction
JEL Classification: C33, C43, E32, E37
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting
By Mario Forni, Marc Hallin, ...
-
Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets
-
By James H. Stock and Mark W. Watson
-
Monetary Policy in a Data-Rich Environment
By Ben S. Bernanke and Jean Boivin
-
Eurocoin: A Real Time Coincident Indicator of the Euro Area Business Cycle
By Filippo Altissimo, Antonio Bassanetti, ...
-
Are More Data Always Better for Factor Analysis?
By Jean Boivin and Serena Ng
-
Implications of Dynamic Factor Models for VAR Analysis
By James H. Stock and Mark W. Watson
-
By Domenico Giannone, Lucrezia Reichlin, ...
-
By Domenico Giannone, Lucrezia Reichlin, ...