Tweets and Trades: The Information Content of Stock Microblogs
89 Pages Posted: 6 Nov 2010 Last revised: 5 Jan 2011
Date Written: November 1, 2010
Abstract
Microblogging forums have become a vibrant online platform to exchange trading ideas and other stock-related information. Using methods from computational linguistics, we analyze roughly 250,000 stock-related microblogging messages, so-called tweets, on a daily basis. We find the sentiment (i.e., bullishness) of tweets to be associated with abnormal stock returns and message volume to predict next-day trading volume. In addition, we analyze the mechanism leading to efficient aggregation of information in microblogging forums. Our results demonstrate that users providing above average investment advice are retweeted (i.e., quoted) more often and have more followers, which amplifies their share of voice in microblogging forums.
Keywords: Twitter, Microblogging, Stock Market, Investor Sentiment, Text Classification, Computational Linguistics
JEL Classification: G12, G14
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Giving Content to Investor Sentiment: The Role of Media in the Stock Market
-
More than Words: Quantifying Language to Measure Firms' Fundamentals
By Paul C. Tetlock, Maytal Saar-tsechansky, ...
-
Is All that Talk Just Noise? The Information Content of Internet Stock Message Boards
By Murray Z. Frank and Werner Antweiler
-
Media Coverage and the Cross-Section of Stock Returns
By Lily H. Fang and Joel Peress
-
When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks
By Tim Loughran and Bill Mcdonald
-
Do Stock Market Investors Understand the Risk Sentiment of Corporate Annual Reports?
By Feng Li
-
Yahoo! For Amazon: Sentiment Parsing from Small Talk on the Web
By Sanjiv Ranjan Das and Mike Y. Chen
-
By Zhi Da, Joseph Engelberg, ...
-
By Joshua D. Coval and Tyler Shumway
-
The Impact of Credibility on the Pricing of Managerial Textual Content
By Elizabeth Demers and Clara Vega