Modeling Asset Prices for Algorithmic and High Frequency Trading
32 Pages Posted: 9 Dec 2010 Last revised: 28 Feb 2014
Date Written: December 8, 2010
Abstract
Algorithmic Trading (AT) and High Frequency (HF) trading, which are responsible for over 70\% of US stocks trading volume, have greatly changed the microstructure dynamics of tick-by-tick stock data. In this paper we employ a hidden Markov model to examine how the intra-day dynamics of the stock market have changed, and how to use this information to develop trading strategies at high frequencies. In particular, we show how to employ our model to submit limit-orders to profit from the bid-ask spread and we also provide evidence of how HF traders may profit from liquidity incentives (liquidity rebates). We use data from February 2001 and February 2008 to show that while in 2001 the intra-day states with shortest average durations (waiting time between trades) were also the ones with very few trades, in 2008 the vast majority of trades took place in the states with shortest average durations. Moreover, in 2008 the states with shortest durations have the smallest price impact as measured by the volatility of price innovations.
Keywords: High Frequency Traders, Algorithmic Trading, Durations, Hidden Markov Model
JEL Classification: G10, G11, G14, C41
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Luc Bauwens and J. V. K. Rombouts
-
Time-Varying Arrival Rates of Informed and Uninformed Trades
By David Easley, Liuren Wu, ...
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks
By Luc Bauwens and Pierre Giot
-
By Luc Bauwens and David Veredas
-
Identifying Bull and Bear Markets in Stock Returns
By John M. Maheu and Thomas H. Mccurdy