Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering
53 Pages Posted: 21 Feb 2011
Date Written: February 1, 2011
Abstract
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle filter. Methods are employed to ensure that the approximating likelihood is continuous as a function of the unknown parameters thus enabling the use of standard Newton-Raphson type maximization algorithms. Our approach is robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in such contexts. In addition it provides a feasible basis for undertaking the nontrivial task of model comparison. Furthermore, we introduce new volatility model, namely SV-GARCH which attempts to bridge the gap between GARCH and stochastic volatility specifications. In nesting the standard GARCH model as a special case, it has the attractive feature of inheriting the same unconditional properties of the standard GARCH model but being conditionally heavier-tailed; thus more robust to outliers. It is demonstrated how this model can be estimated using the described methodology. The technique is applied to daily returns data for S&P 500 stock price index for various spans. In assessing the relative performance of SV with leverage and jumps and nested specifications, we find strong evidence in favour of a including leverage effect and jumps when modelling stochastic volatility. Additionally, we find very encouraging results for SV-GARCH in terms of predictive ability which is comparable to the other models considered.
Keywords: Stochastic Volatility, Particle Filter, Simulation, State Space, Leverage Effect, Jumps
JEL Classification: C01, C11, C14, C15, C32, E32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo