The Impact of the UK New Deal for Lone Parents on Benefit Receipt
54 Pages Posted: 21 Feb 2011
Date Written: February 1, 2011
Abstract
This paper evaluates the UK New Deal for Lone Parents (NDLP) program, which aims to return lone parents to work. Using rich administrative data on benefit receipt histories and a "selection on observed variables" identification strategy, we find that the program modestly reduces benefit receipt among participants. Methodologically, we highlight the importance of flexibly conditioning on benefit histories, as well as taking account of complex sample designs when applying matching methods. We find that survey measures of attitudes add information beyond that contained in the benefit histories and that incorporating the insights of the recent literature on dynamic treatment effects matters even when not formally applying the related methods. Finally, we explain why our results differ substantially from those of the official evaluation of NDLP, which found very large impacts on benefit exits.
Keywords: program evaluation, active labor market policy, matching, lone parents, New Deal
JEL Classification: I3
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Characterizing Selection Bias Using Experimental Data
By James J. Heckman, Hidehiko Ichimura, ...
-
Propensity Score Matching Methods for Non-Experimental Causal Studies
By Rajeev H. Dehejia and Sadek Wahba
-
Propensity Score Matching Methods for Non-Experimental Causal Studies
By Rajeev H. Dehejia and Sadek Wahba
-
Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs
By Orley Ashenfelter and David Card
-
Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs
By Rajeev H. Dehejia and Sadek Wahba
-
Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review
-
The Role of the Propensity Score in Estimating Dose-Response Functions
-
Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?
By Jeffrey A. Smith and Petra Todd