A Jackknife-Type Estimator for Portfolio Revision
49 Pages Posted: 30 May 2011 Last revised: 22 Mar 2016
Date Written: March 5, 2013
Abstract
This article proposes a novel approach to portfolio revision. The current literature on portfolio optimization uses a somewhat naive approach, where portfolio weights are always completely revised after a predefined fixed period. However, one shortcoming of this procedure is that it ignores parameter uncertainty in the estimated portfolio weights, as well as the biasedness of the in-sample portfolio mean and variance as estimates of the expected portfolio return and out-of-sample variance. To rectify this problem, we propose a Jackknife procedure to determine the optimal revision intensity, i.e., the percent of wealth that should be shifted to the new, in-sample optimal portfolio. We find that our approach leads to highly stable portfolio allocations over time, and can significantly reduce the turnover of several well established portfolio strategies. Moreover, the observed turnover reductions lead to statistically and economically significant performance gains in the presence of transaction costs.
Keywords: Portfolio optimization, Portfolio revision, Jackknife, Transaction costs
JEL Classification: G11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Portfolio Selection and Asset Pricing Models
By Lubos Pastor
-
A Test for the Number of Factors in an Approximate Factor Model
-
Comparing Asset Pricing Models: an Investment Perspective
By Lubos Pastor and Robert F. Stambaugh
-
Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps
By Tongshu Ma and Ravi Jagannathan
-
On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model
By Louis K.c. Chan, Jason J. Karceski, ...
-
Honey, I Shrunk the Sample Covariance Matrix
By Olivier Ledoit and Michael Wolf
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Constraints and the Fundamental Law of Active Management