Bayesian Model Averaging and Weighted Average Least Squares: Equivariance, Stability, and Numerical Issues
CentER Working Paper Series No. 2011-082
31 Pages Posted: 25 Jul 2011
Date Written: July 21, 2011
Abstract
This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squares (WALS) estimator developed by Magnus et al. (2010). Unlike standard pretest estimators which are based on some preliminary diagnostic test, these model averaging estimators provide a coherent way of making inference on the regression parameters of interest by taking into account the uncertainty due to both the estimation and the model selection steps. Special emphasis is given to a number practical issues that users are likely to face in applied work: equivariance to certain transformations of the explanatory variables, stability, accuracy, computing speed and out-of-memory problems. Performances of our bma and wals commands are illustrated using simulated data and empirical applications from the literature on model averaging estimation.
Keywords: model uncertainty, model averaging, Bayesian analysis, exact computation
JEL Classification: C11, C51, C52
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Eduardo Ley and Mark F.j. Steel
-
By Eduardo Ley and Mark F.j. Steel
-
Are Any Growth Theories Robust?
By Steven N. Durlauf, Andros Kourtellos, ...
-
Are Any Growth Theories Robust?
By Steven N. Durlauf, Andros Kourtellos, ...
-
Jointness of Growth Determinants
By Gernot Doppelhofer and Melvyn Weeks
-
Determinants of Economic Growth: Will Data Tell?
By Antonio Ciccone and Marek Jarocinski
-
Determinants of Economic Growth: Will Data Tell?
By Antonio Ciccone and Marek Jarocinski
-
Growth Empirics Under Model Uncertainty: Is Africa Different?
-
By Theo S. Eicher, Chris Papageorgiou, ...
-
Jointness in Bayesian Variable Selection with Applications to Growth Regression
By Eduardo Ley and Mark F.j. Steel
