Estimating Dynamic Panel Data Models: A Practical Guide Fo Macroeconomists
Board of Governors of the Federal Reserve System Finance and Econ. Disc. Series #97-3
22 Pages Posted: 6 May 1997
Date Written: January 16, 1997
Abstract
We use a Monte Carlo approach to investigate the performance of several different methods designed to reduce the bias of the estimated coefficients for dynamic panel data models estimated with the longer, narrower panels typical of macro data. We find that the bias of the least squares dummy variable approach can be significant, even when the time dimension of the panel is as large as 30. For panels with small time dimensions, we find a corrected least squares dummy variable estimator to be the best choice. However, as the time dimension of the panel increases, the computationally simpler Anderson-Hsiao estimator performs equally well.
JEL Classification: C23, O11, E00
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Fiscal Policy and Economic Growth: An Empirical Investigation
By William Easterly and Sergio T. Rebelo