Heavy-Tail and Plug-In Robust Consistent Conditional Moment Tests of Functional Form
36 Pages Posted: 22 Aug 2011 Last revised: 18 May 2012
Date Written: May 17, 2012
Abstract
We present asymptotic power-one tests of regression model functional form for heavy tailed time series. Under the null hypothesis of correct specification the model errors must have a finite mean, and otherwise only need to have a fractional moment. If the errors have an infinite variance then in principle any consistent plug-in is allowed, depending on the model, including those with non-Gaussian limits and/or a sub-root(n)-convergence rate. One test statistic exploits an orthogonalized test equation that promotes plug-in robustness irrespective of tails. We derive chi-squared weak limits of the statistics, we characterize an empirical process method for smoothing over a trimming parameter, and we study the finite sample properties of the test statistics.
Keywords: conditional moment test, tail trimming, heavy tails
JEL Classification: C13, C20, C22
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Moment Condition Tests for Heavy-Tailed Time Series
By Jonathan B. Hill and Mike Aguilar
-
Robust Estimation and Inference for Heavy Tailed Nonlinear GARCH
-
Least Tail-Trimmed Squares for Infinite Variance Autoregressions
-
Robust Score and Portmanteau Tests of Volatility Spillover
By Mike Aguilar and Jonathan B. Hill
-
Measuring Tail Thickness Under GARCH and an Application to Extreme Exchange Rate Changes
By Terry Marsh and Niklas Wagner