Non-Bayesian Social Learning
25 Pages Posted: 24 Aug 2011 Last revised: 30 Jan 2013
Date Written: August 5, 2011
Abstract
We develop a dynamic model of opinion formation in social networks when the information required for learning a payoff-relevant parameter may not be at the disposal of any single agent. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully Bayesian manner, agents use a simple updating rule which linearly combines their personal experience and the views of their neighbors (even though the neighbors’ views may be quite inaccurate). This non-Bayesian learning rule is motivated by the formidable complexity required to fully implement Bayesian updating in networks. We show that, as long as individuals take their personal signals into account in a Bayesian way, repeated interactions lead them to successfully aggregate information and learn the true underlying state of the world. This result holds in spite of the apparent naiveté of agents’ updating rule, the agents’ need for information from sources the existence of which they may not be aware of, the possibility that the most persuasive agents in the network are precisely those least informed and with worst prior views, and the assumption that no agent can tell whether her own views or those of her neighbors are more accurate.
Keywords: Social networks, learning, information aggregation
JEL Classification: D83, L14
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Persuasion Bias, Social Influence, and Uni-Dimensional Opinions
By Peter M. Demarzo, Jeffrey Zwiebel, ...
-
Naive Learning in Social Networks: Convergence, Influence and Wisdom of Crowds
By Matthew O. Jackson and Benjamin Golub
-
Bayesian Learning in Social Networks
By Daron Acemoglu, Munther Dahleh, ...
-
Bayesian Learning in Social Networks
By Ilan Lobel, Munther Dahleh, ...
-
Opinion Dynamics and Learning in Social Networks
By Daron Acemoglu and Asuman E. Ozdaglar
-
Rational Social Learning by Random Sampling
By Lones Smith and Peter Norman Sorensen
-
Information Percolation in Segmented Markets
By Darrell Duffie, Gustavo Manso, ...
-
Information Percolation in Segmented Markets
By Darrell Duffie, Semyon Malamud, ...
-
How Homophily Affects the Speed of Learning and Best Response Dynamics
By Benjamin Golub and Matthew O. Jackson
-
Spread of (Mis)Information in Social Networks
By Daron Acemoglu, Asuman E. Ozdaglar, ...