Adjoint Expansions in Local Lévy Models
Pagliarani S., Pascucci, A., Riga C., SIAM J. Finan. Math., 4(1), 265–296. DOI:10.1137/110858732
36 Pages Posted: 4 Oct 2011 Last revised: 17 Nov 2016
Date Written: October 20, 2011
Abstract
We propose a novel method for the analytical approximation in local volatility models with Lévy jumps. The main result is an expansion of the characteristic function in a local Lévy model, which is worked out in the Fourier space by considering the adjoint formulation of the pricing problem. Combined with standard Fourier methods, our result provides efficient and accurate pricing formulae. In the case of Gaussian jumps, we also derive an explicit approximation of the transition density of the underlying process by a heat kernel expansion: the approximation is obtained in two ways, using PIDE techniques and working in the Fourier space. Numerical tests confirm the effectiveness of the method.
Keywords: Lévy process, local volatility, analytical approximation, partial integro-differential equation, Fourier methods
JEL Classification: G00, G13
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Analytical Approximation of the Transition Density in a Local Volatility Model
-
By Guoping Xu and Harry Zheng
-
A Family of Density Expansions for Lévy-Type Processes
By Matthew Lorig, Stefano Pagliarani, ...
-
Pricing Vulnerable Claims in a Lévy Driven Model
By Agostino Capponi, Stefano Pagliarani, ...
-
Local Stochastic Volatility with Jumps: Analytical Approximations
-
By Jean-pierre Fouque, Matthew Lorig, ...
-
Explicit Implied Volatilities for Multifactor Local-Stochastic Volatility Models
By Matthew Lorig, Stefano Pagliarani, ...