Can Internet Search Queries Help to Predict Stock Market Volatility?
Paris December 2012 Finance Meeting EUROFIDAI-AFFI Paper
European Financial Management, Forthcoming
34 Pages Posted: 10 Oct 2011 Last revised: 7 Jan 2016
Date Written: June 6, 2012
Abstract
This paper studies the dynamics of stock market volatility and retail investors' attention to the stock market, where attention to the stock market is measured by internet search queries related to the leading stock market index. We find a strong co-movement of the Dow Jones' realized volatility and the volume of search queries for its name. Furthermore, search queries Granger cause volatility: a heightened number of searches today is followed by an increase in volatility tomorrow. We utilize this finding to improve several models of realized volatility. Including search queries in autoregressive models of realized volatility helps to improve volatility forecasts in-sample and out-of-sample as well as for different forecasting horizons. Search queries are particularly useful in high-volatility phases when a precise prediction is vital.
Keywords: realized volatility, forecasting, investor behavior, limited attention, noise trader, search engine data
JEL Classification: G10, G14, G17
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Realized Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Stock Return Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
Range-Based Estimation of Stochastic Volatility Models
By Sassan Alizadeh, Michael W. Brandt, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen, Tim Bollerslev, ...