Estimation of and Inference about the Expected Shortfall for Time Series with Infinite Variance
41 Pages Posted: 4 Nov 2011
Date Written: July 28, 2011
Abstract
We study estimation and inference of Expected Shortfall (ES) for time series with Infinite variance. The rate of convergence is determined by the tail thickness parameter and the limiting distribution is in the stable class with parameters depending on the tail thickness parameter of the time series and on the dependence structure, which makes inference complicated. A subsampling procedure is proposed to carry out statistical inference. We also analyze a nonparametric estimator of conditional expected shortfall.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions
By Oliver B. Linton, Enno Mammen, ...
-
Estimating Semiparametric Arch (∞) Models by Kernel Smoothing Methods
By Oliver B. Linton and Enno Mammen
-
Estimating Semiparametric Arch (Infinity) Models by Kernel Smoothing Methods
By Enno Mammen and Oliver B. Linton
-
Yield Curve Estimation by Kernel Smoothing Methods
By Oliver B. Linton, Enno Mammen, ...
-
Yield Curve Estimation by Kernel Smoothing Methods
By Oliver B. Linton, Enno Mammen, ...
-
A Local Instrumental Variable Estimation Method for Generalized Additive Volatility Models
By Woocheol Kim and Oliver B. Linton
-
More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors
By Zhijie Xiao, Oliver B. Linton, ...
-
More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors
By Raymond Carroll, Oliver B. Linton, ...
-
News - Good or Bad - and its Impact Over Multiple Horizons
By Xilong Chen and Eric Ghysels