Consistency of AUC Maximization as an Estimator of Binary Choice Models
Fedotenkov I. Consistency of the estimator of binary response models based on AUC maximization. Statistical Methods & Applications 22(3), Springer, 2013, p. 381-390.
10 Pages Posted: 25 Jan 2012 Last revised: 26 Mar 2014
Date Written: January 24, 2012
Abstract
This paper studies the asymptotic properties of the binary choice model estimator, based on the maximization of the Area Under receiver operating characteristic Curve (AUC). It is shown that under certain assumptions AUC maximization is a consistent method of binary choice models estimation up to normalizations. As AUC is equivalent to Mann-Whitney U statistics and Wilcoxon test of ranks, maximization of area under ROC curve is equivalent to the maximization of corresponding statistics. Comparing with the parametric methods, such as logit and probit, AUC maximization relaxes assumptions about the distribution of errors, but imposes some restrictions on the distribution of regressors, which can be easily checked, since this information is observed.
Keywords: ROC, AUC maximization, consistency, binary choice model
JEL Classification: C01, C13
Suggested Citation: Suggested Citation