Portfolio Liquidation in Dark Pools in Continuous Time
37 Pages Posted: 31 Jan 2012 Last revised: 3 Dec 2015
Date Written: December 10, 2012
Abstract
We consider an illiquid financial market where a risk averse investor has to liquidate a portfolio within a finite time horizon [0,T] and can trade continuously at a traditional exchange (the "primary venue") and in a dark pool. At the primary venue, trading yields a linear price impact. In the dark pool, no price impact costs arise but order execution is uncertain, modeled by a multi-dimensional Poisson process. We characterize the costs of trading by a linear-quadratic functional which incorporates both the price impact costs of trading at the primary exchange and the market risk of the position. The liquidation constraint implies a singularity of the value function of the resulting minimization problem at the terminal time T. Via the HJB equation and a quadratic ansatz, we obtain a candidate for the value function which is the limit of a sequence of solutions of initial value problems for a matrix differential equation. We show that this limit exists by using an appropriate matrix inequality and a comparison result for Riccati matrix equations. Additionally, we obtain upper and lower bounds of the solutions of the initial value problems, which allow us to prove a verification theorem. If a single asset position is to be liquidated, the investor slowly trades out of her position at the primary venue, with the remainder being placed in the dark pool at any point in time. For multi-asset liquidations this is generally not the case; it can, e.g., be optimal to oversize orders in the dark pool in order to turn a poorly balanced portfolio into a portfolio bearing less risk.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Optimal Trading Strategy and Supply/Demand Dynamics
By Anna A. Obizhaeva and Jiang Wang
-
Optimal Trading Strategy and Supply/Demand Dynamics
By Anna A. Obizhaeva and Jiang Wang
-
Optimal Trading Strategy and Supply/Demand Dynamics
By Anna A. Obizhaeva and Jiang Wang
-
Optimal Execution Strategies in Limit Order Books with General Shape Functions
By Aurélien Alfonsi, Antje Fruth, ...
-
By Olaf Korn and Alexander Kempf
-
Quasi-Arbitrage and Price Manipulation
By Gur Huberman and Werner Stanzl
-
Fluctuations and Response in Financial Markets: The Subtle Nature of 'Random' Price Changes
By Jean-philippe Bouchaud, Yuval Gefen, ...
-
By Gur Huberman and Werner Stanzl
-
How Markets Slowly Digest Changes in Supply and Demand
By Jean-philippe Bouchaud, J. Doyne Farmer, ...
-
No-Dynamic-Arbitrage and Market Impact
By Jim Gatheral